Resorption protection. Anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels.

نویسندگان

  • William A Hoch
  • Eric L Singsaas
  • Brent H McCown
چکیده

The resorption protection hypothesis, which states that anthocyanins protect foliar nutrient resorption during senescence by shielding photosynthetic tissues from excess light, was tested using wild-type (WT) and anthocyanin-deficient mutants of three deciduous woody species, Cornus sericea, Vaccinium elliottii (Chapmn.), and Viburnum sargentii (Koehne). WT Betula papyrifera (Marsh) was included to compare the senescence performance of a species that does not produce anthocyanins in autumn. Plants were subjected to three environmental regimes during senescence: an outdoor treatment; a 5-d high-stress (high light and low temperature) treatment followed by transfer to a low-stress environment and a low-stress treatment that served as control. In the outdoor treatment, the appearance of anthocyanins in senescing leaves of WT plants was concomitant with the development of photo-inhibition in mutant plants of all three anthocyanin-producing species. In the high-stress environment, WT plants maintained higher photochemical efficiencies than mutants and were able to recover when transferred to the low-stress environment, whereas mutant leaves dropped while still green and displayed signs of irreversible photooxidative damage. Nitrogen resorption efficiencies and proficiencies of all mutants in both stressful treatments were significantly lower than the WT counterparts. B. papyrifera displayed photochemical efficiencies and nitrogen resorption performance comparable with the highest of the anthocyanin-producing species in all three senescing environments, indicating a photoprotective strategy divergent from the other species studied. These results strongly support the resorption protection hypothesis of anthocyanins in senescing leaves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood.

Why the leaves of many woody species accumulate anthocyanins prior to being shed has long puzzled biologists because it is unclear what effects anthocyanins may have on leaf function. Here, we provide evidence for red-osier dogwood (Cornus stolonifera) that anthocyanins form a pigment layer in the palisade mesophyll layer that decreases light capture by chloroplasts. Measurements of leaf absorb...

متن کامل

Early Autumn Senescence in Red Maple (Acer rubrum L.) Is Associated with High Leaf Anthocyanin Content

Several theories exist about the role of anthocyanins in senescing leaves. To elucidate factors contributing to variation in autumn leaf anthocyanin contents among individual trees, we analysed anthocyanins and other leaf traits in 27 individuals of red maple (Acer rubrum L.) over two growing seasons in the context of timing of leaf senescence. Red maple usually turns bright red in the autumn, ...

متن کامل

Respiratory mutant and liquid holding recovery inhibition in yeast cells

Background: Cell ability to recover from radiation damage is of great relevance in cancer treatment. It is often believed that the inhibition of cell ability to the liquid holding recovery (LHR) may be an indicator of the overall suppression of cell ability to recover from potentially lethal radiation damage. However, the literature contains no experimental evidence whether the LHR inhibition m...

متن کامل

A cellular timetable of autumn senescence.

We have studied autumn leaf senescence in a free-growing aspen (Populus tremula) by following changes in pigment, metabolite and nutrient content, photosynthesis, and cell and organelle integrity. The senescence process started on September 11, 2003, apparently initiated solely by the photoperiod, and progressed steadily without any obvious influence of other environmental signals. For example,...

متن کامل

Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency.

Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. The purpose of leaf senescence is the recovery of nutrients before the leaves fall. Photoperiod and temperature are the main cues controlling leaf senescence in winter deciduous species, with water stress imposing an additional influence. Photoperiod exerts a strict control on leaf senescenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 133 3  شماره 

صفحات  -

تاریخ انتشار 2003